Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Humanos , Adulto , Ratos , Animais , Idoso , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Oxirredução , Hipertrofia/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/farmacologia
2.
Antioxidants (Basel) ; 13(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539916

RESUMO

Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.

3.
Front Psychol ; 15: 1331886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445056

RESUMO

The war in Ukraine significantly impacts the mental health and well-being of its youth. Like other communities affected by war, Ukraine's youth are at risk of developing psychopathological symptoms, and there is a shortage of mental health and psychosocial support services to address this. Resilience-building initiatives present an alternative approach to supporting the well-being of young people by promoting protective processes to enhance the likelihood of positive development in the context of adversity. Emerging research findings suggest that young people themselves can serve as powerful facilitators of such initiatives with one another. Yet, evidence about culturally and contextually relevant protective processes is needed to guide such interventions, especially among young people experiencing the war and working to boost resilience within their communities. In this study, we identified key protective processes Ukrainian youth depend on as they adapt to the conflict while also preparing to implement a resilience-building intervention as a facilitator. Through thematic analysis of transcripts of three training sessions with Ukrainian youth (n = 15, 100% female; aged 18-22), we identified the following themes: positive thinking, sense of control, emotion awareness and regulation, close personal relationships, and community support. Findings also highlighted the cultural and contextual nuance of these protective processes, as well as individual differences in the ways they co-occurred and manifested within each youth. Results have implications for developing tailored yet flexible resilience-building interventions that can be delivered by lay people, including youth with their peers, in Ukraine and other cultures and contexts.

4.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106143

RESUMO

Low nephron number correlates with the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development. Differences in the expression of genes involved in metabolism were identified in most cell types we analyzed, yielding imbalances and shifts in cellular energy production. We further demonstrate that LPD impedes branching morphogenesis and significantly reduces the number of pretubular aggregates - the initial precursors to nephron formation. The most striking observation was that LPD changes the developmental trajectory of nephron progenitor cells, driving the formation of a partially committed cell population which likely reflects a failure of cells to commit to nephron formation and which ultimately reduces endowment. This unique profile of a fetal programming defect demonstrates that low nephron endowment arises from the pleiotropic impact of changes in branching morphogenesis and nephron progenitor cell commitment, the latter of which highlights a critical role for nutrition in regulating the cell fate decisions underpinning nephron endowment. Significance Statement: While a mother's diet and behavior can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.

5.
Nat Prod Res ; : 1-6, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38143303

RESUMO

Cachrys pungens Jan ex Guss. (Apiaceae) is a perennial plant native to Italy and Northwestern Africa. This species is known for its content in furanocoumarins, and the methanolic extract obtained with maceration previously demonstrated significant phototoxicity on 375 melanoma cells. Here, in order to better explain the biological effects, the apoptotic responses on melanoma cancer cell line were verified. The aerial parts were extracted with methanol through an innovative solid-liquid extraction technology, the Naviglio extractor®, and the raw extract was tested for its photobiological properties on human melanoma C32 cells irradiated with UVA light. The in vitro antioxidant potential was assessed as well. The sample exerted a concentration-dependent photocytotoxic activity (IC50 value = 3.00 ± 0.16 µg/mL). In line with these evidences, in C32-treated cells subjected to UV irradiation, further data have reported an up-regulation of p53 and PARP, both proteins involved in apoptotic response and DNA repair.

6.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003541

RESUMO

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Assuntos
Poncirus , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos , Poncirus/química , Pontos de Checagem do Ciclo Celular , Neoplasias da Próstata/metabolismo , Apoptose , Sementes/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proliferação de Células , Ciclo Celular
7.
Nat Commun ; 14(1): 7733, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007516

RESUMO

Nephron endowment at birth impacts long-term renal and cardiovascular health, and it is contingent on the nephron progenitor cell (NPC) pool. Glycolysis modulation is essential for determining NPC fate, but the underlying mechanism is unclear. Combining RNA sequencing and quantitative proteomics we identify 267 genes commonly targeted by Wnt activation or glycolysis inhibition in NPCs. Several of the impacted pathways converge at Acetyl-CoA, a co-product of glucose metabolism. Notably, glycolysis inhibition downregulates key genes of the Mevalonate/cholesterol pathway and stimulates NPC differentiation. Sodium acetate supplementation rescues glycolysis inhibition effects and favors NPC maintenance without hindering nephrogenesis. Six2Cre-mediated removal of ATP-citrate lyase (Acly), an enzyme that converts citrate to acetyl-CoA, leads to NPC pool depletion, glomeruli count reduction, and increases Wnt4 expression at birth. Sodium acetate supplementation counters the effects of Acly deletion on cap-mesenchyme. Our findings show a pivotal role of acetyl-CoA metabolism in kidney development and uncover new avenues for manipulating nephrogenesis and preventing adult kidney disease.


Assuntos
Rim , Néfrons , Acetilcoenzima A/metabolismo , Acetato de Sódio/metabolismo , Rim/metabolismo , Células-Tronco/metabolismo
8.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929966

RESUMO

Membrane contact sites (MCSs) are areas of close membrane proximity that allow and regulate the dynamic exchange of diverse biomolecules (i.e., calcium and lipids) between the juxtaposed organelles without involving membrane fusion. MCSs are essential for cellular homeostasis, and their functions are ensured by the resident components, which often exist as multimeric protein complexes. MCSs often involve the endoplasmic reticulum (ER), a major site of lipid synthesis and cellular calcium storage, and are particularly important for organelles, such as the mitochondria, which are excluded from the classical vesicular transport pathways. In the last years, MCSs between the ER and mitochondria have been extensively studied, as their functions strongly impact cellular metabolism/bioenergetics. Several proteins have started to be identified at these contact sites, including membrane tethers, calcium channels, and lipid transfer proteins, thus raising the need for new methodologies and technical approaches to study these MCS components. Here, we describe a protocol consisting of combined technical approaches, that include proximity ligation assay (PLA), mitochondria staining, and 3D imaging segmentation, that allows the detection of proteins that are physically close (>40 nm) to each other and that reside on the same membrane at ER-mitochondria MCSs. For instance, we used two ER-anchored lipid transfer proteins, ORP5 and ORP8, which have previously been shown to interact and localize at ER-mitochondria and ER-plasma membrane MCSs. By associating the ORP5-ORP8 PLA with cell imaging software analysis, it was possible to estimate the distance of the ORP5-ORP8 complex from the mitochondrial surface and determine that about 50% of ORP5-ORP8 PLA interaction occurs at ER subdomains in close proximity to mitochondria.


Assuntos
Cálcio , Mitocôndrias , Retículo Endoplasmático , Membranas Mitocondriais , Lipídeos
9.
Cell Rep ; 42(11): 113376, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917588

RESUMO

Dysregulation of mitochondrial lipidome is associated with several human pathologies. Sun et al.1 show that LPGAT1 cooperates with TIMM14 to regulate phosphatidylglycerol transport from the endoplasmic reticulum to the mitochondria, and uncover the involvement of LPGAT1 deficiency in MEGDEL syndrome.


Assuntos
Mitocôndrias , Fosfatidilgliceróis , Humanos , Fosfatidilgliceróis/metabolismo , Mitocôndrias/patologia , Retículo Endoplasmático/metabolismo
10.
Commun Biol ; 6(1): 1008, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794132

RESUMO

Phagosome maturation is critical for immune defense, defining whether ingested material is destroyed or converted into antigens. Sec22b regulates phagosome maturation, yet how has remained unclear. Here we show Sec22b tethers endoplasmic reticulum-phagosome membrane contact sites (MCS) independently of the known tether STIM1. Sec22b knockdown increases calcium signaling, phagolysosome fusion and antigen degradation and alters phagosomal phospholipids PI(3)P, PS and PI(4)P. Levels of PI(4)P, a lysosome docking lipid, are rescued by Sec22b re-expression and by expression of the artificial tether MAPPER but not the MCS-disrupting mutant Sec22b-P33. Moreover, Sec22b co-precipitates with the PS/PI(4)P exchange protein ORP8. Wild-type, but not mutant ORP8 rescues phagosomal PI(4)P and reduces antigen degradation. Sec22b, MAPPER and ORP8 but not P33 or mutant-ORP8 restores phagolysosome fusion in knockdown cells. These findings clarify an alternative mechanism through which Sec22b controls phagosome maturation and beg a reassessment of the relative contribution of Sec22b-mediated fusion versus tethering to phagosome biology.


Assuntos
Fagocitose , Fagossomos , Fagossomos/metabolismo , Fagocitose/fisiologia , Retículo Endoplasmático/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
11.
Cell Death Discov ; 9(1): 353, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749101

RESUMO

The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.

12.
Gut Microbes ; 15(1): 2240050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37526398

RESUMO

Short-chain fatty acids (SCFA) are involved in immune system and inflammatory responses. We comprehensively assessed the host genetic and gut microbial contribution to a panel of eight serum and stool SCFAs in two cohorts (TwinsUK, n = 2507; ZOE PREDICT-1, n = 328), examined their postprandial changes and explored their links with chronic and acute inflammatory responses in healthy individuals and trauma patients. We report low concordance between circulating and fecal SCFAs, significant postprandial changes in most circulating SCFAs, and a heritable genetic component (average h2: serum = 14%(SD = 14%); stool = 12%(SD = 6%)). Furthermore, we find that gut microbiome can accurately predict their fecal levels (AUC>0.71) while presenting weaker associations with serum. Finally, we report different correlation patterns with inflammatory markers depending on the type of inflammatory response (chronic or acute trauma). Our results illustrate the breadth of the physiological relevance of SCFAs on human inflammatory and metabolic responses highlighting the need for a deeper understanding of this important class of molecules.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Ácidos Graxos Voláteis/metabolismo , Fezes , Inflamação
13.
Int J Cancer ; 153(6): 1257-1272, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37323038

RESUMO

Adiponectin is the major adipocytes-secreted protein involved in obesity-related breast cancer growth and progression. We proved that adiponectin promotes proliferation in ERα-positive breast cancer cells, through ERα transactivation and the recruitment of LKB1 as ERα-coactivator. Here, we showed that adiponectin-mediated ERα transactivation enhances E-cadherin expression. Thus, we investigated the molecular mechanism through which ERα/LKB1 complex may modulate the expression of E-cadherin, influencing tumor growth, progression and distant metastasis. We demonstrated that adiponectin increases E-cadherin expression in ERα-positive 2D and higher extent in 3D cultures. This occurs through a direct activation of E-cadherin gene promoter by ERα/LKB1-complex. The impact of E-cadherin on ERα-positive breast cancer cell proliferation comes from the evidence that in the presence of E-cadherin siRNA the proliferative effects of adiponectin is no longer noticeable. Since E-cadherin connects cell polarity and growth, we investigated if the adiponectin-enhanced E-cadherin expression could influence the localization of proteins cooperating in cell polarity, such as LKB1 and Cdc42. Surprisingly, immunofluorescence showed that, in adiponectin-treated MCF-7 cells, LKB1 and Cdc42 mostly colocalize in the nucleus, impairing their cytosolic cooperation in maintaining cell polarity. The orthotopic implantation of MCF-7 cells revealed an enhanced E-cadherin-mediated breast cancer growth induced by adiponectin. Moreover, tail vein injection of MCF-7 cells showed a higher metastatic burden in the lungs of mice receiving adiponectin-treated cells compared to control. From these findings it emerges that adiponectin treatment enhances E-cadherin expression, alters cell polarity and stimulates ERα-positive breast cancer cell growth in vitro and in vivo, sustaining higher distant metastatic burden.


Assuntos
Adiponectina , Neoplasias , Humanos , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Caderinas/genética
14.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373242

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Resveratrol/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
15.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240258

RESUMO

Obesity has a noteworthy role in breast tumor initiation and progression. Among the mechanisms proposed, the most validated is the development of chronic low-grade inflammation, supported by immune cell infiltration along with dysfunction in adipose tissue biology, characterized by an imbalance in adipocytokines secretion and alteration of their receptors within the tumor microenvironment. Many of these receptors belong to the seven-transmembrane receptor family, which are involved in physiological features, such as immune responses and metabolism, as well as in the development and progression of several malignancies, including breast cancer. These receptors are classified as canonical (G protein-coupled receptors, GPCRs) and atypical receptors, which fail to interact and activate G proteins. Among the atypical receptors, adiponectin receptors (AdipoRs) mediate the effect of adiponectin, the most abundant adipocytes-derived hormone, on breast cancer cell proliferation, whose serum levels are reduced in obesity. The adiponectin/AdipoRs axis is becoming increasingly important regarding its role in breast tumorigenesis and as a therapeutic target for breast cancer treatment. The objectives of this review are as follows: to point out the structural and functional differences between GPCRs and AdipoRs, and to focus on the effect of AdipoRs activation in the development and progression of obesity-dependent breast cancer.


Assuntos
Neoplasias da Mama , Receptores de Adiponectina , Humanos , Feminino , Receptores de Adiponectina/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Adiponectina/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Microambiente Tumoral
16.
J Transl Med ; 21(1): 232, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004031

RESUMO

BACKGROUND: The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS: Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS: Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION: These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.


Assuntos
Neoplasias da Mama , MicroRNA Circulante , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNA Circulante/metabolismo , Neoplasias da Mama/complicações , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Qualidade de Vida , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
17.
J Transl Med ; 21(1): 165, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864445

RESUMO

BACKGROUND: Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS: Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS: Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS: Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.


Assuntos
Inibidores de Histona Desacetilases , Ácido Valproico , Feminino , Humanos , Ácido Valproico/farmacologia , Células MCF-7 , Espécies Reativas de Oxigênio , Ciclo Celular , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia
18.
World Neurosurg X ; 18: 100164, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36818737

RESUMO

The impact of surgery for cerebellar brain metastases in elderly population has been the object of limited studies in literature. Given the increasing burden of their chronic illnesses, the decision to recommend surgery remains difficult. All patients aged ≥65 years, who underwent surgical resection of a cerebellar brain metastasis from May 2000 and May 2021 at IRCCS National Cancer Institute "Regina Elena", were analyzed. The study cohort includes 48 patients with a mean age of 70.8 years. 7 patients belonged to the II Class according to the RPA classification, 41 to the III Class; the median GPA classification was 1.5. Median pre-operative and post-operative KPS was 60. Median Charlson Comorbidity Index (CCI) was 11; median 5-variable modified Frailty Index was 2. Overall, 14 patients (29%) presented perioperative neurologic and systemic complications. 34 patients (71%) were able to perform adjuvant therapies as RT and/or CHT after surgery. A higher CCI predicted complications occurrence (p = 0.044), while significant factors for a post-operative KPS ≥70, were i) hemispheric location of the metastasis, ii) higher pre-operative KPS, iii) RPA II classification. Median Overall Survival was 7 months. A post-operative KPS <70 (p = 0.004) and a short time interval between diagnosis of the primary tumor and cerebellar metastasis appearance, were predictive for a worse outcome (p = 0.012). Our study suggests that selected elderly patients with cerebellar metastases may benefit from microsurgery to continue their adjuvant therapies, although a high complications rate should be taken in account.

19.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821088

RESUMO

The integrity of ER-mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER-mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER-mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER-plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Fosfolipídeos , Sinaptotagmina I , eIF-2 Quinase , Humanos , Transporte Biológico , eIF-2 Quinase/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Sinaptotagmina I/metabolismo , Membranas Mitocondriais/metabolismo
20.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829943

RESUMO

Interesting photobiological properties have been demonstrated for some Cachrys species, including C. libanotis L., C. sicula L., and C. pungens Jan. The present study was designed to assess the photocytotoxic activity of Prangos ferulacea Lindl. (synonym of C. ferulacea (L.) Calest.). This plant was previously considered a Cachrys species but, at present, it is part of the Prangos genus. P. ferulacea is an orophilous plant present in the eastern Mediterranean and in western Asia. Three different extraction techniques were utilized. Obtained extracts were compared both for their phytochemical content and for their photobiological properties on human melanoma cells irradiated with UVA light. The apoptotic responses, together with the antioxidant activity, were also assessed. P. ferulacea extracts were able to affect cell viability in a concentration-dependent manner, with the sample obtained through supercritical CO2 extraction showing the highest activity (IC50 = 4.91 µg/mL). This research points out the interesting content in the photoactive compounds of this species, namely furanocoumarins, and could provide a starting point for further studies aimed at finding new photosensitizing agents useful in cancer photochemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...